ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Απεικόνιση 3D στο επίπεδο
Unprotect[Graphics3D];
Graphics3D /: MMAView[Graphics3D[args__, opts: OptionsPattern[] ] ] = .;
Unprotect[ToString];
ToString[expr: _[__], StandardForm] := With[{view = MMAView[expr]}, ExportString[
StringReplace[
(view // ToBoxes) /. {RowBox->RowBoxFlatten} // ToString
, {"\[NoBreak]"->""}]
, "String"]];
Protect[ToString];
Clear["Global`*"]
f[x_, y_] := x^2 - 2 y^2
Ισοϋψείς
arithmosIsoypson = 10;
ContourPlot[f[x, y], {x, -5, 5}, {y, -3, 3}, PlotLegends -> Automatic, Contours -> arithmosIsoypson]
Γράφημα πυκνότητας
DensityPlot[f[x, y], {x, -5, 5}, {y, -3, 3}, PlotLegends -> Automatic]
DensityPlot[f[x, y], {x, -5, 5}, {y, -3, 3}, PlotLegends -> Automatic, ColorFunction -> "SunsetColors"]
DensityPlot[f[x, y], {x, -5, 5}, {y, -3, 3}, PlotLegends -> Automatic, ColorFunction -> "SunsetColors",LightingAngle -> 180*Degree]
Συνδυασμός 3D με 2D
Clear["Global`*"]
zContour = -8;
zMax = 2;
x1 = -1;
x2 = 1;
y1 = -1;
y2 = 1;
f[x_, y_] := Sin[2 Pi x^3] + Cos[3 Pi y^2]
Show[Plot3D[f[x, y], {x, x1, x2}, {y, y1, y2},
PlotStyle -> Opacity[0.7],
PlotRange -> {Automatic, Automatic, {zContour, zMax}}],
Graphics3D[
ContourPlot[f[x, y], {x, x1, x2}, {y, y1, y2}, Axes -> False][[1]] /. {x : _Real, y : _Real} -> {x, y, zContour}],
ViewPoint -> {-2, -2, 1}, ImageSize -> 300
]
Static web notebook
Author kkoud
Created Mon 6 Oct 2025 11:20:08
Outline
Κώστας Κούδας | © 2025